Filtrations + associated graded rings + modules

In this section, we give some CA dets that allow us to construct some important geom. Objects such as the blowup + tangent cone.

Def: A multiplicative filtration of a ring R
is a sequence of ideals
$$R = I_0 \supseteq I_1 \supseteq \cdots$$
 s.t. $I_i I_j \subseteq I_{i+j}$ for all i,j.
EX: If $I \subseteq R$ any ideal, then
 $R \supseteq I \supseteq I^2 \supseteq I^3 \supseteq \cdots$ is a filtration,

We can generalize this to modules: $M \ge IM \ge I^2M \ge ...$ is the <u>I-adic filtration</u> of the R-module M. Even more generally:

Associated graded rings + modules

Def: The associated graded ring of
$$R$$
 w.r.t. T is
 $gr_{T}R := \frac{R}{T} \oplus \frac{T}{T^{2}} \oplus \frac{T}{T^{2}} \oplus \frac{T}{T^{m+1}}$
 W multiplication as follows: if $\overline{a} \in \frac{T}{T^{m+1}}$, $\overline{b} \in \frac{T}{T^{m+1}}$
s.t. $a \in T^{m}$, $b \in T^{n}$, then $ab \in T^{m+n}$. Define

$$\overline{a} \cdot \overline{b} = \overline{a} \overline{b} \quad \in I^{m+h}$$

Why is this well-defined?

If
$$a' = a$$
 and $b' = b$ in $\mathbb{I}'_{\mathbb{I}^{m+1}}$ and $\mathbb{I}'_{\mathbb{I}^{n+1}}$, resp.,
Then $a' = a + x$, $b' = b + y$ for some $x \in \mathbb{I}^{m+1}$, $y \in \mathbb{I}^{n+1}$.

Thus,
$$a'b' = ab + ay + bx + xy$$

in I^{m+n+1}
in I^{m+n+2}
 $=)$ $a'b' = ab$ in I^{m+n} .

More generally, if

$$J: M = M_0 \ge M_1 \ge ...$$

is an I - filtration of M, an R-module, define

$$\operatorname{gr}_{\mathcal{H}} \mathcal{M} := \overset{\mathcal{M}}{/}_{\mathcal{M}_{1}} \oplus \overset{\mathcal{M}}{/}_{\mathcal{M}_{2}} \oplus \cdots$$

This is a $gr_{I}R$ -module as follows: If $\overline{a} \in \overline{T}_{I}^{m+1}$, $\overline{b} \in M_{n+1}$, then $ab \in \overline{I}^{m}M_{n} \subseteq M_{n+m}$. Set $\overline{a} \cdot \overline{b} = \overline{ab} \in M_{n+m}$. Mutmet

Stability of a filtration is important:

Prop: let IER be an ideal and Ma finitely generated R-module. If

is an I-stable filtration, w/M_i f.g. for all i, then gry M is a finitely generated $gr_I R$ -module.

Pf: Stability \Rightarrow we can find $n = M_i = M_{i+1}$ for $i \ge h$. So for $i \ge h$, we have

$$\left(\frac{T}{T^{2}}\right)\left(\begin{array}{c}M_{i}\\M_{i+1}\end{array}\right) \in \begin{array}{c}M_{i+1}\\M_{i+2}\end{array} = \begin{array}{c}TM_{i}\\T^{2}M_{i}\end{array}$$

Let $\overline{rm} \in IM_i$, $W/r \in I$, $m \in M_i$. Then $\overline{r} \cdot \overline{m} \in (I/I^2) (M_i/M_{i+1})$ so equality holds. That is,

$$\left(\begin{array}{c} \mathbb{I}_{2} \end{array} \right) \left(\begin{array}{c} \mathbb{M}_{i} \\ \mathbb{M}_{i+1} \end{array} \right) = \left(\begin{array}{c} \mathbb{M}_{i+1} \\ \mathbb{M}_{i+2} \end{array} \right)$$

for all i≥n.

Thus, a generating set for
$$M_{i+1}$$
 generates M_{i+1} , M_{i+2} ,
so the unions of generators of M_{i} , ..., M_{n+1} generate
gr M. Since each M_i is f.g., gr M is as well. \Box

We likely won't have any interesting homomorphisms $M \rightarrow grM$, but we do have a natural <u>set</u> map:

Def: Let J be the filtration M=M, >M, >..., and fEM. The <u>initial form</u> of f is

$$in(f) := \begin{cases} 0 & \text{if } f \in \bigcap_{m=0}^{\infty} M_m \\ \overline{f} \in M_m & \text{if } f \in M_m \setminus M_{m+1}. \end{cases}$$

Ex: let
$$J=(xy+y^3, x^2) \subseteq R = k[x,y]$$
, and $I=(x,y)$.
Consider $gr_I R$.

Define in(J) to be the ideal in $gr_I R$ generated by in(f) for all $f \in J$.

Note that $in(x^2) = \overline{x^2} \in \frac{T^2}{I^3}$, and $in(xy+y^3) = \overline{xy} \in \frac{T^2}{I^3}$.

However,
$$y^{5} = (y^{2} - x)(xy + y^{3}) + yx^{2} \in J$$

$$xy^{3} + y^{5} - x^{2}y - xy^{3}$$

so $y^5 \in in(J)$, but y^5 is not generated by x^2 and xyin $gr_T R$. That is, in(J) is not hecessarily generated by the images of generators of J.

This construction gives us a way to turn an arbitrary Noetherian ring into a finitely generated algebra over a field:

let
$$I \subseteq R$$
 be a max'l ideal, R Noetherian. Then
 $gr_{I}R = \frac{R}{I} \oplus \frac{T}{I^{2}} \oplus \dots$
 k
and $I = (f_{1}, \dots, f_{n})$, so for $a \in \frac{T}{I^{2}}$, $a = r_{i}f_{i} + \dots + r_{n}f_{n}$
where $r_{i} = 0$ or $r_{i} \notin I$.

If $a \in T_{I}^{m}$, $a = r_{i}f_{i} + \dots + r_{n}f_{n}$, where each $r_{i} \in \mathbb{R} \setminus T^{m}$ or $r_{i} = O$. So by induction, each r_{i} is a polynomial in the fi w/ coefficients in k.

Def: If R is a local ring w/ max'l ideal I, then the <u>Hilbert function of R</u> is

$$H_R(n) = dim R_{I}^{T} T_{I}^{n+1}$$

If M is a f.g. R-module, define $H_{M}(n) = \dim_{R_{L}} \frac{I^{n}M}{I^{n+1}M}$

Note that these are just the Hilbert functions of $gr_{I}R$ and $gr_{I}M$, so we already know that for large values of n they agree with polynomials $P_{R}(n)$ and $P_{M}(n)$ of deg $\leq H_{R}(1) - 1$.

We can often learn about R by looking at
$$gr_2 R$$
.
However, we need that no elements of R are
lost in $gr_1 R$. i.e. we need $\bigcap I^{d} = O$.

We'll soon see (via Knull intersection theorem) That this is usually the case.

Application : The tangent cone

Let
$$R = k[x_1, ..., x_n]_J$$
 and $I = (x_1, ..., x_n)$ s.t. $J \in I$.
Let $X = V(J) \in A^h$. Then $O \in X$.
 $(x_1, ..., x_n)$

The tangent cone to X at O is $V(in(J)) \subseteq Spec k(x_1,...,x_n),$ where in(J) is thought of as an ideal in $k[x_{1,--}, x_n]$. It consists of limits of secont lines through the origin.

$$E_X: C = \bigvee (y^2 - \chi^2(\chi+1))$$

